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A B S T R A C T   

Conventional drug discovery and development is tedious and time-taking process; because of which it has failed 
to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid- 
19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time re
quirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery 
is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile 
platform for repurposing as the network biology is used to model the interactions between variety of biological 
concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug 
repurposing while specifically focusing on the applications of network-based approach to drug repurposing in 
Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on 
network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches 
in general and specific to network are stated along with future recommendations for better network-based 
models.   

1. Introduction 

A novel coronavirus (CoV) first appeared by the end of 2019 in 
Wuhan, China and spread to over 70,000 individuals with 1800 death 
cases within the matter of first 50 days of the disease [1]. Public health 
emergency of international health concern was declared by the World 
Health Organization (WHO) on January 30, and it scaled up to pandemic 
as of March 11, 2020 [2]. The analytical methods like amino acid and 
nucleotide sequencing confirmed the relation of novel CoV to same class 
as severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) [3]. 
This new version of coronavirus was named as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) by the international committee 
on the taxonomy of viruses and similarly, the disease was named as 
Covid-19/SARS-CoV-2 [4]. SARS-CoV-2 is a variant of coronavirus with 
enveloped single-stranded RNA which bears a corona like structure of 
spikes as shown in Fig. 1(a). The main host protein for the attachment of 
spikes has identified as angiotensin converting enzyme 2 (ACE2) re
ceptor. This variant of coronavirus evolved to become the most conta
gious and infectious among coronavirus family. It enters the lungs by 

inhaling the contaminated air with viral bodies and infects distal airway 
cells leading to further spread towards alveolar epithelial cells and 
causes the damage starting from infection to severe damage as shown in 
Fig. 1(a). As of May 25, 2021, total number of Covid-19 cases reported 
have surpassed the 30 million cases globally with 1.6 % in US only [5]. 
Owing to its high mortality, morbidity, and contagiousness there is dire 
need for the effective treatments. 

Whereas, drug development is complex, time taking, and expensive 
process. On average it takes around 12–15 years with $2–$3 billion of 
investment to take a de novo drug from concept to a market ready 
product [6]. The total number of drugs which are getting the FDA 
approval are less than 10 % and this rate is declining with time [7]. As a 
result, pharmaceuticals research suffers from decrease in productivity 
and faces a persistent gape between the need of treatments and available 
response [8,9]. Repurposing the already approved drugs is a quick and 
efficient to provide the new treatments by finding out novel uses of the 
drugs that have well known safety and efficacy profiles. Many drugs 
have already been repurposed based on variety of the methods and have 
been approved for new indication [10]. While repurposing can be done 
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at the any stage during drug discovery and development, but its actual 
potential can be seen in case of already approved drugs [11]. Thus, 
recently studies have been shown to increasingly use the computational 
methods to predict the novel drug-target interactions for repurposing 
the drug or target. One of the methods widely used for drug repurposing 
is network-based approach. Network based approaches are in-silico 
approaches which are faster with lower-cost as compared to experi
mental approaches and serve as a robust strategy to identify the novel 
drug target interactions or repurposed compound among a pool of many. 

Moreover, in the wake of current situation novel Covid-19 (severe 
acute respiratory syndrome coronavirus 2) has infected around 526.7 
million people and have caused more than 6 million deaths globally [5]. 
In an emergency situations like Covid-19 de novo drug development is 
not the feasible option since there is urgent need to find the treatments 
which can be immediately prescribed to prevent the mortality and 
morbidity. So, to face the crisis because of pandemic drug repurposing 
seems a tangible strategy for fighting against Covid-19 and other such 
viral diseases. Additionally, a lot of methods, applications, and data
bases have been proposed in literature motivating for information rich 
studies for furthering in unprecedented yet potential direction. Recently, 
multiple review articles have been published focusing on artificial in
telligence (AI) algorithms [12] such as deep learning models [13], and 
network-based methods [14]. Moreover, survey targeting the drug 
repurposing have also been performed [15,16] and these include com
ments and opinion focusing the drug design [17] and development 
process [18]. Additionally, articles summarizing the covid-19 drug 
repurposing using machine learning [19] and deep learning [20,21] 
methods are published as well. To the best of our knowledge, until now 
there is no review study until now has published which summarizes the 
drug repurposing studies for Covid-19 with special emphasis on 
network-based drug repurposing approaches to Covid-19. 

As new studies are reported widely almost every day, so it is not 
applicable to provide a wide and comprehensive overview of all the 
available repurposing studies. Thus, this review is mainly focused to 
bridge the gap by providing overview of machine learning and deep 
learning approaches to drug repurposing with focus on recent 

developments in network-based drug repurposing methods, tools, and 
databases used in Covid-19 as shown in Fig. 1(b). In this connection, first 
we present an overview to computational drug repurposing studies for 
Covid-19 along with drug and disease related databases followed by 
recent machine learning and deep learning-based drug repurposing 
studies. Next, the overview of different network methods and recent 
state of art studies categorized for each network type is explained. 
Moreover, recent network-based drug repurposing studies for Covid-19 
are discussed and their limitations, benefits, and tools used are sum
marized. Finally, limitations and future recommendation for improved 
outcome of network-based drug repurposing in Covid-19 and in general 
are discussed followed by conclusion. 

2. Computational approaches to drug repurposing 

Generally, drug repurposing principals can be classified in to two 
major categories, drug-based or disease-based repurposing. As per the 
common and widely used hypothesis a drug can cure two diseases if 
there exist some similarity or the interdependence between two dis
eases. Similarly, a drug can be associated with various targets and tar
gets owing to confounding nature of the drugs [22,23]. Additionally, 
when it comes to computational drug repurposing, a major challenge is 
to distinguish between the drug targets and additional gene products 
which are indirectly participating in the activity of the targets. Unfor
tunately, traditional methods are limited in their ability to recognize the 
molecular targets of drugs in a vast population of gene products followed 
using small datasets originated from different platforms and environ
mental settings. This might cause inaccuracies in the findings reported in 
some studies [22]. Small datasets and networks may give the partial 
knowledge of the living systems. 

The amount of biomedical and pharmaceutical data has seen the 
tremendous rise in the recent years so the improvement in the compu
tational drug repurposing approaches is also visible. Computational 
approaches like data mining, machine and deep learning, and network 
analysis have been taken to depth to systematically repurpose the drugs 
to overcome the limitations faced by the traditional statistical 
approaches. 

Newly adopted computational methods and approaches for demys
tifying the relationships among different types of biological networks 
have benefitted the drug repurposing to a greater length. Different 
biological entities such as genes, proteins, drugs, and diseases and 
interaction can uncover the potential therapeutic opportunities. The 
overview of the computational drug repurposing studies with emphasis 
on network-based approaches is given in Table 5–7. 

2.1. Machine learning 

First attempt to drug repurposing started around two decades ago 
using simple similarity measure with single source of biological and 
biomedical data utilization and finally reached to machine learning [24, 
25] break through. Artificial and machine learning technology play a 
crucial role which is modernized with the advent of deep learning and 
neural network algorithms. Machine learning algorithm can learn from 
the data and mimic the cognitive human behavior [26]. These days, 
biological scientists have integrated the machine learning in drug design 
and discovery processes for improved outcomes [8,27–29]. 

The applications of the machine learning in drug discovery and 
development are numerous which include but are not limited to virtual 
screening (both primary and secondary), toxicity monitoring of the 
drug, drug efficacy prediction, dosage predictions, drug repurposing, 
and drug target interactions (DTIs) predictions [25]. Some of the ma
chine learning methods used for drug repurposing in Covid-19 include 
k-nearest neighbors [30], random forest [31], support vector machine 
[32,33], and more. Thus, over the past decade AI based applications 
have helped the drug discovery efforts [34,35]. Moreover, with the in
vention of deep learning and its ability to extract the features from raw 

Fig. 1. Workflow the current study. a) the schematics of Sar-CoV-2 virus 
structure and its pathogenesis in alveoli with different stages, and b) different 
drug repurposing methods for Sar-CoV-2 discussed in the present study. 

F. Ahmed et al.                                                                                                                                                                                                                                  



Biomedicine & Pharmacotherapy 153 (2022) 113350

3

data automatically, has increased the impact of AI approaches as 
compared to other Insilico methods [36,37]. Various deep learning al
gorithms utilized in finding treatment against Covid-19 includes artifi
cial neural networks (ANN), convolutional neural networks (CNN), and 
long short-term memory (LSTM). 

Apart from this, to accelerate the process of drug development for 
Covid-19, machine learning based molecular docking frameworks were 
utilized on approved as well as new chemical entities. ML enabled mo
lecular docking has been utilized a lot in virtual screening and repur
posing [38–41]. ML enabled molecular docking methods help to find out 
the bioactive molecules against disease protein of interest. 

2.1.1. Drug repurposing based on classification 
There are a lot of studies which have taken the drug repurposing task 

as binary classification or classification task. Drug-target interaction 
(DTI) prediction or drug-disease association prediction can help to 
reduce the volume of redundant compounds and thus serve as an 
important step in drug development. In our recent work, we developed a 
feature enriched drug repurposing framework named SperoPredictor 
[42] which consisted multiple state of art machine learning algorithms 
as shown in Fig. 2(b). The algorithms were individually trained and later 
stacked together (Fig. 2(b)) followed by molecular docking-based vali
dation (Fig. 2(c)). SperoPredictor training was performed on the feature 
enriched drug-disease association data of 1430 FDA approved drugs 
collected from various databases and then unified into binary strings as 
shown in Fig. 2(a). The training data contained four drug features and 
three disease features all unified in binary strings which enabled the 
reduction in training time and space required. The machine learning 

models were tested on the performance parameters such as accuracy, 
precision, f1 score, Mathew’s correlation coefficient (MCC), sensitivity, 
and specificity. The testing accuracies of the models were reported to be 
99.3 % for Random Forest (RF) and 99.03 % for Tree Ensemble (TE). 
SperoPredictor was deployed to predict the potential drugs to be 
repurposed for Covid-19, NASH, and renal fibrosis. In case of Covid-19, 
25 potential candidate drugs were predicted. Literature survey of peer 
reviewed journals, databases, and patents suggested 12/25 drugs (48 %) 
were already used for Covid-19. Additionally, molecular docking vali
dation results suggested that four drugs (Balaglitazone, Cortivazol, 
Velusetrag, and 16 alpha Bromoepiandrosterone) can be used for pre
clinical validation and clinical trials prior to use in patients. The Sper
oPredictor results testify the usefulness of having such platforms that 
can be readily deployed in case of emergent situations like Covid-19. 
Moreover, the importance of the DTI prediction is highlighted in many 
studies such as in [43]. These studies to predict the drug-disease asso
ciations or drug target interactions require various resources such as 
done in [44]. Drug-drug interaction based on structural similarity and 
side effects and similarly disease-disease based on gene expression or 
disease phenotype have been used. Many online databases such as 
DrugBank [45], CTD [46], and ChEMBL [47] are providing the 
open-source drug-target data. The other databases for the various type of 
drug and disease related data are mentioned in the Tables 1 and 2 along 
with other information. Whereas Table 1 provides information related 
Drug specific databases followed by Table 2 providing information on 
disease information contained databases. Additionally, drug-drug, dis
ease-disease similarity measures were used here as classification fea
tures followed using logistic regression. These interactions are normally 

Fig. 2. SperoPredictor framework for drug repurposing and a) shows how drug and disease related information is collected from various databases and transformed 
into a feature matrix of binary strings. Whereas b) depicts the development, training, testing and validation of machine learning algorithms and finally c) dem
onstrates the procedure for the deployment of SperoPredictor followed by the literature and molecular docking-based validation [42]. 
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used in ML and DL studies as shown in Fig. 3(a-b). Moreover, in the 
mentioned study classifier was trained to distinguish between the true 
and false drug-disease association leading to prediction of undiscovered 
drug-disease associations. Another study designed to predict the DTIs in 
Covid-19 is given in [48]. The study avails the proteins and drugs pro
vided in their structured format. The physical and chemical features 
were extracted from the protein amino-acid sequences of drug targets 
and from SMILES forms of the drug structures [49–52]. Then the 
developed model was compared with existing studies using k-fold cross 
validation (Fig. 3(b)). To deploy the model covid-19 was selected as a 
case study. Prediction model was deployed as shown in Fig. 3(c) on the 

proteins known to have been involved in the Covid-19 to predict the 
possible interactions or drug-target interactions. The model was further 
deployed to drugs active in Covid-19 and the drugs were predicted with 
100 % accuracy. The interaction of the drugs was shown with ACE2 
[53–56] self-membrane protein, a key player in Covid-19 enabling dis
ease infection. 

2.1.2. Drug repurposing based on collaborative or similarity filtering 
There are many studies which have applied the machine learning 

based collaborative filtering for predicting novel drug-disease associa
tions or repurposed indications backed by trends found in the gene 

Table 1 
Drug related databases and their information of the data type, data statistics, availability, and programmatic access are summarized.   

Database 
name 

Type Statistic Availability Programmatic 
access  

1 PubChem Structural and 
common data 

PubChem contains 237 million bioactivities for three million compounds, determined 
in over 1.2 million biological assay experiments 

Open source Rest API  

2 ChEMBL Structural and 
common data 

more than 2.2 million distinct compound structures, with 5.4 million activity values 
from more than 1.5 million assays. 

Open source Rest API  

3 STITCH DTIs 0.5 million Chemicals, 9.6 million proteins, and 1.6 billion interactions Open source Rest API  
4 TTD DTIs 33598 drug-like agents, 1102 targets and their interactions. Open source Django Rest API  
5 DrugBank Common resource Total small molecules 11937, Biotech drugs 2687, approved drugs 4243, approved 

small molecules 2725 
Open source and 
commercial 

–  

6 BindingDB DTIs containing ~20 000 experimentally determined binding affinities of protein–ligand 
complexes, for 110 protein targets including isoforms and mutational variants, and 
~11 000 small molecule ligands 

Open source and 
commercial 

Rest API  

7 DT-Web DTIs – Open source R-CMD  
8 TCGA Perturbation Data TCGA generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and 

proteomic data 
Open source –  

9 SIDER Side effect data Side effects of 1400 FDA approved Drugs Open source –  
10 PharmaGKB Drug-Disease 

associations 
– – API  

11 GEO Perturbation Data Contains around 4348 datasets, 23,172 platforms, and 5,029,933 samples. Open source –  
12 LINCS Perturbation Data Gene expressions of thousands of perturbations Open source –  

Table 2 
Various databases related to diseases, genes, proteins, and drugs and other information about their data type, statistics, availability, and programmatic access.   

Database name Type Statistic Availability Programmatic access  

1 OMIM-21 Gene–disease association Autosomal – 24,944, X linked – 1331, Y linked – 63, mitochondrial – 71 Upon 
request 

–  

2 miR2disease – 22 miRNA–disease association Number of miRNAs: 349 
Number of diseases: 163 
Number of entries: 3273 

Open source –  

3 STITCH-23 Chemical–Protein 
interaction 

0.5 million Chemicals, 9.6 million proteins, and 1.6 billion interactions Open source Rest API  

4 HPRD-24 Protein–protein interaction 
(PPI) 

PPIs – 41,327, Protein expressions – 112,158, PubMed Links 453,521 Open source –  

5 BioGRID-25 PPI/genetic interaction 86,000 + genes, 745 different cell lines, 127 different cell types, and 23 
different phenotypes across 4 different organisms 

Open source Rest API, Blast, and 
more  

6 DIP-26 PPI – Upon 
request 

–  

7 TRED-27 TF–gene interaction It contains 11,660 target genes and around 14,908 target promoters – Sequence tool 
analysis  

8 TRANSFAC-28 TF–gene interaction – Paid MATCH Suite  
9 miRbase-29 MicroRNA–gene interaction 38,589 miRNA entries Open source Blast  
10 TargetScan-30 MicroRNA–gene interaction – Open source –  
11 Signaling 

Network-31 
Human signaling network – Open source Multiple tools  

12 GO-32 Functional annotation More than 700,000 experimentally supported Open 
Source 

Multiple tools  

13 CMAP-33 Microarray library containing over 1.5 M gene expression profiles from ~5000 small- 
molecule compounds, and ~3000 genetic reagents, tested in multiple cell 
types 

Open source Rest API, multiple 
tools  

14 Arrayexpress-34 Microarray It is consisted of 75,570 experiments and 25,96,304 assays Open 
Source 

Rest API, Blast, 
Multiple tools  

15 GEO-35 Microarray Contains around 4348 datasets, 23,172 platforms, and 5,029,933 samples. Open source –  
16 DCDB-39 Drug combination–disease 

association 
It contains the drug combinations of 330 approved and 1033 investigational 
drugs. 

Open source –  

17 KEGG-40 Pathway,disease, drug Information can extract and stats are different for different KEGG databases Open source Fasta, Blast  
18 ClinicalTrial.gov Drug–disease association It contains around 414,049 studies conducted in 220 countries Open source –  
19 Drugs@FDA Drug–disease association – Open source –  
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expressions of different samples [22,57–59]. One such study is present 
in [60], multiple drug similarity datasets were constructed for finding 
the therapeutic classes of FDA approved drugs. In this method any 
mismatches between known and unknow associations were considered 
as potential repurposed indication. Drug-drug similarity matrices were 
constructed based on gene expression, structural, and molecular 
target-based similarity. The prepared data was used to train the support 
vector machine (SVM) classifier followed by the collaborative filtering 
to predict novel drug-disease associations. Moreover, a unified compu
tational framework was proposed [61] based upon integration of various 
heterogenous data sources to foresee the drug-drug, disease-disease, and 
drug-disease similarity (known) based data set for building drug-disease 
network. The problem set forth in the form of drug-disease network was 
optimally solved by using block coordinate descent (BCD) strategy. A 
causal inference-probabilistic matrix factorization (CI-PMF) approach 
was followed in [61] for classification of novel drug-disease associa
tions. Many biomedical and biological sources were leveraged to build a 
causal network which contained multiple nodes such as drugs, genes, 
pathways, and diseases together. Probabilistic matrix factorization 
(PMF) model was constructed following the network creation to classify 
drug-disease associations in different groups followed by drug ranking 
leading to identification of novel drug-disease associations. Addition
ally, somehow similar studies on larger scale were carried out in [62–64] 
to infer off-target drug interactions for undiscovered drug candidates’ 
identification. Machine learning plays a key role in drug repurposing 
against Covid-19 and pace of research in the field has skyrocketed since 
the emergence of Covid-19. However, there are still some issues to be 
addressed. For example, lack of standardized frameworks, because 
without standardization the results received from machine learning 

models cannot be translated to clinical research. Additionally, there is 
lack of replicability and reproducibility, despite these, benefits offered 
by ML methods are numerous within the field of drug repurposing. 

2.2. Deep learning 

Robust and efficient computational methods making use deep 
learning are widely required for drug discovery against Covid-19 [65]. 
The overall combined workflow of ML and DL is shown in Fig. 3 and few 
recent well-known studies along with further information are summa
rized in Table 3. Compared to machine learning (ML), deep learning 
(DL) methods enable the automatic feature extraction and feature en
gineering. Convolutional neural networks and recursive neural networks 
have been widely used in bioinformatics studies with successful results 
such as in Covid-19 [21,66–68]. Since deep learning models are good at 
finding the intricate underlying patterns in data, thus they are suitable to 
large scale unstructured data such as electronics health records (EHR), 
whole proteome, and human genome leading to high chances and 
suitability to be applied in life sciences applications such as drug 
repurposing [65]. In comparison to state of art machine learning 
methods, deep learning is distinguished by the flexibility of neural 
networks [36]. Deep learning methods have also been widely used in 
drug repurposing against Covid-19. A few well-known studies are given 
in Table 3. 

A recent work involving drug repurposing in Covid-19 using deep 
learning is given in [69] and are given in Table 3. Here, deep learning 
model named as Molecule Transformer-Drug Target Interaction 
(MT-DTI) was used for predicting novel drug target interactions (DTIs). 
It utilized chemical structure SMILES and amino acid sequences (as a 

Fig. 3. Machine learning and deep learning- 
based drug repurposing methods. a) pre
processing of the data accessing different data
bases following by data cleaning and then 
making the data machine learning ready. b) 
splitting of the training and then training and 
testing of the machine and deep learning 
models is carried out. Different machine 
learning and deep learning models are 
described followed by model validation 
methods and finally c) shows the deployment of 
the trained models and prediction validation.   
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chemical-protein pairs) as an input obtained from BindingDB and Drug 
Target Commons (DTC) databases. MT-DTI predicted several commer
cially available or in practice anti-viral drugs having potency against 
Covid-19 protein targets [70] confirmed by the pre-clinical validation 
assays of the Covid-19. MT-DTI model was deployed for the selection of 
compounds from 1400 FDA approved drugs having the strong affinity 
against the host cellular targets for viral diseases [71]. Another deep 
learning-based drug repurposing study done in [72] used deep learning 
on a massive knowledge graph to identify and select promising 
anti-Covid-19 drug candidates. The knowledge graph consisted around 
15 million edges with 39 types of relationship connecting the whole 
bunch of networks together. Deep learning was primarily used in this 
study to learn representation of graph entities leading to 41 repurposed 
drug candidates. These drugs include dexamethasone (an 
anti-inflammatory) agent having bioactivity against Covid-19 and 
Niclosamide [73] validated by proteomics of Covid-19 infected cell and 
gene expression. 

Some studies have adopted hybrid strategy where deep learning is 
coupled with molecular simulation to further prioritize or performing 
the screening procedure for the predicted drug target interactions as 
shown in Fig. 3(b-c). One such study is done in [74] which focused on 
RNA-dependent RNA polymerase (RdRp) targeting candidate drug 
molecules from 1906 FDA approved drugs. Drug candidate such as 
pralatrexate [75] and azithromycin [76] predicted from this study were 
validated in in-vitro testing and found to inhibit Covid-19. First drug was 
active once the virus entered host cells while the later mentioned drug 
has efficacy in before and after stages. 

Additionally, software tools (MolAICal) are also developed which 
combine the deep learning models along with classical algorithms to 

find the drugs which interact effectively with 3D pockets of proteins 
[77] (Fig. 4(c)). Deep learning enabled framework, MolAICal, were 
trained using the approved drug fragment data available in PDBbind and 
drug like, bioactive molecules available in ZINC. To demonstrate the 
drug design features of the MolAICal, membrane protein glucagon re
ceptor and Covid-19 main protease were modelled [72]. Other tools 
include Deep Docking (DD) [78] platform developed using deep learning 
which avails the QSAR model good at performing virtual screening to 
find the potential drug candidate or lead like molecule from ZINC 
database. Using the proposed method in study [78] led to identification 
of 1000 top ranked potential drug compound supposed to have efficacy 
against Covid-19 Mpro. 

Deep learning methods (such as Fig. 3(b)) has number of advantages 
in comparison to traditional methods such as ability of DL models to 
model and learn complex features automatically. DL has helped in 
finding the repurposed drugs against Covid-19 and in other pathogens 
however certain challenges still exist. First to mention is the black box 
nature of DL models, lack of interpretability, output is dependent on the 
input data, and large standardized and dataset of biochemical data is 
necessary to gain the better learning and performance outcome of the 
system. Although there is huge amount of data already available but 
mining and making the standard data ready for ML and DL applications 
is still challenging. Hopefully, the large dataset which will be developed 
in future will make it possible to ensure the standard characterization of 
the deep learning-based drug discovery and drug repurposing models 
[65,79]. 

Table 3 
Machine learning and deep learning based drug repurposing studies for Covid-19.   

Study ML Models Dataset Targets Drugs Ref.  

1 AI approach fighting COVID-19 
with repurposing drugs 

Deep neural network Drugs with known profiles FIP and Covid-19 13/80 Drugs 
showed in- 
vitro activity 

[80]  

2 Deep Learning based prediction of 
Commercially available drugs 

Deep learning-based, 
Molecule Transformer- 
Drug Target Interaction 
(MT-DTI) 

SMILES and DTIs Covid-19 associated 3CLpro, RdRp, 
helicase, 3′-to-5′ exonuclease, 
endoRNAse, and 2′-O-ribose 
methyltransferase 

8 Drugs [70]  

3 machine learning and mechanistic 
models of signal transduction 
circuits related to SARS-CoV-2 
infection 

mechanistic model Drug targets, pathway genes, 
Gene expression 

Covid-19 related signaling pathways 
and transduction circuits 

– [81]  

4 Open Data to Discover 
Therapeutics for COVID-19 Using 
Deep Learning 

Deep learning-based 
knowledge graph 

Knowledge graph of 15 million 
edges across 39 types of 
relationships 

Covid-19 41 Drugs [72]  

5 Repositioning of 8565 Existing 
Drugs for COVID-19 

2-D fingerprint, GBDT 
model, Recurrent Neural 
Network (RNN) 

Largest available experimental 
data set for SARS-CoV-2 or SARS- 
CoV 3CL (main) protease 
inhibitors 

Covid-19 associated 3CLpro 40 Drugs [82]  

6 Large scale virtual screening of 
ligand using DNN 

Deep neural network 
enabled ChemAI 

220 M data points across 3.6 M 
molecules from three public 
drug-discovery databases 

Covid-19 related 3CLpro, PLP 20 Drugs [83]  

7 Deep learning enabled docking to 
rapidly identify the potential 
Covid-19 inhibitors 

Deep learning-based 
Docking Platform 

Purchasable compounds 
obtained from databases. (1.3 
billion compounds from Zinc) 

Covid-19 associated Mpro 1000 Drugs [78]  

8 Prediction of potential 
commercially inhibitors against 
SARSCoV-2 by multi-task deep 
model 

Multi-task deep learning 
model for classification 
and regression 

Covid-19 related viral protein 
dataset 

Covid-19 related 3CLpro 10 Drugs [84]  

9 DeepPurpose: a deep learning 
library for drug–target interaction 
prediction 

Convolutional neural 
network (CNN), Deep 
purpose 

DTIs Covid-19 related 3CLpro 13 Drugs [85]  

10 Screening of Therapeutic Agents 
for COVID-19 Using Machine 
Learning and Ensemble Docking 
Studies 

Random forest (RF) 
regression algorithm, 
ensemble docking 

DTIs S, S-ACE2 complex 187 Drugs [86]  

11 SARS-CoV-2 using ML from a > 10 
million chemical space 

Support vector machine 
(SVM), Random Forest 
(RF) 

assay data of 65 Covid-19 host 
targets and purchasable 14 
million chemicals 

Covid-19 host targets 58 Drugs [87]  
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2.3. Network analysis 

Networks are empirical and versatile data structures and now a days 
are widely used in drug repurposing studies as shown in Fig. 4. Myriad 
number of concepts in the field of biology are represented using net
works and graphs [88]. In these approaches data is collected and the 
networks are created (Fig. 4(a)) to infer the associations by using myriad 
number of statistical and computational approaches (Fig. 4(b)). 
Considerable research interest in network analysis on structural and 
functional level to has been developed to extract the relationships be
tween entities in networks and their underlying biological properties 
[89]. Thus, various promising insights comes from this emerging field of 
network medicine [90,91] where tools and concepts from network 
theory are applied. Network interaction concept is heavily used in 
biology since there exist the interactions between different biological 
phenomenon [92]. Networks are composed of two components: nodes 
and edges. Nodes can be drugs, proteins, genes, and complexes etc. 
while the edges can be the interaction between them. Network edges can 
be directed [93–95], undirected [96] or weighted [97,98]. Mostly the 
quantitative information derived from high-throughput screening is 
used to construct the weighted networks where edge is represented by 
some numerical values. In directed networks, traversing is only done in 
the direction of the edge where in case of undirected networks traversing 
is possible in any direction unless it is connected. 

Molecular networks are good at providing insights into contextual 

understanding of drug target and its corresponding mechanism of action 
[99]. Network algorithms can easily achieve such targets by visualizing 
the various already added interactions in the network along with addi
tion of newly found interactions with superimposition of additional 
properties [100]. The networks can handle the heterogenous data 
collected from various data sources. Thus, analyzing the network has 
now become a diverse area to integrate multiple sources like publicly 
available datasets and high throughput data [101]. 

The perfection of these approaches is still partial since these methods 
suffer from lack of knowledge on molecular interactome often leading to 
false results [6,99,102]. Moreover, the available interactomes provide 
the static results of the biological process in contrast to dynamic systems 
in real [99]. Despite these limitations previous efforts have demon
strated the potential and efficacy of network-based approaches and has 
been proved many times in studies like drug-target interaction pre
dictions. Thus, they can also be used as drug repurposing studies. 
Moreover, networks can be categorized based on the data source used to 
construct them such as molecular interaction networks, gene regulatory 
networks, metabolic networks, and protein-protein interaction networks 
etc. [103]. 

2.3.1. Molecular interaction networks 
In network biology, interactions between various biological concepts 

are presented using networks. Networks are made of nodes and edges, 
nodes can be various components such as genes, proteins, complex 

Fig. 4. Network based approaches to drug repurposing for Covid-19. a) Different biological entities related to Covid-19 disease pathogenesis and drugs in general 
which are later used to create a network. b) Network created can be analyzed based on network proximity, AI on graphs, and network diffusion for repurposing the 
potential drugs. Finally, c) shows the different Insilico, in-vitro, and in-vivo validation methods for results obtained. 
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phenotypes such as diseases, and atoms etc. whereas edges can be in
teractions between proteins, genes, or complex phenotypes to show 
relationship or functional interaction and similarity between them. 
Moreover, multiple relationships (Fig. 4(a)) between two nodes can also 
be represented using edges at the same time [104,105]. Further, the 
nodes and edges can be directed [106,107], undirected [108], and 
weighted [109] with qualitative and quantitative information to 
emphasize a proper concept [100]. Systems biology contains various 
molecular interaction which are used to represent distinct molecular 
interactions depending upon the nature of interactions. Molecular net
works are good at providing scenario based valuable insights into 
drug-targets interact and thus can be used to understand the mechanism 
of action of a drug [99]. 

Moreover, numerous studies have demonstrated the practical use of 
networks in drug repurposing [110]. Network algorithms are developed 
to achieve tasks such as visualization of the graphs and interaction be
tween them while adding and imposing the newly discovered relation
ships, additional properties, and connectivity over the primary 
component and their known interactions [100]. Various type of data 
collected from heterogeneous data sources can be represented in one 
network using multiple node and edge arrangement. Due to the diversity 
and abundance of information contained in networks the analysis of the 
networks has become a versatile platform for integrating and analyzing 
multiple sources of high-throughput data for useful insights [101]. One 
survey providing the detailed use of graph theoretical techniques is 
provided in [111]. 

2.3.2. Gene regulatory networks 
Gene regulatory networks use the transcriptomic data which pro

vides the information and insights into drug function by capturing the 
dynamic properties of the cell [99]. Few of the most recent gene regu
latory network-based studies are summarized in Table 4. Gene 
expression-based drug repurposing studies hypothesize that drugs with 
similar gene expression signatures would target the same proteins [14]. 
Moreover, Gene expressions change substantially when disease occur 
specifically the amount of RNA transcript for dysregulated genes 
changes considerably. Differential gene expression analysis can be per
formed to analyze the difference between genes expressions in disease 
and control samples [112]. With the help of technologies now available 
such as microarrays, gene expression profiles rich source of disease data 
is easily available which can be used for multiple purposes. Differential 
gene expression profiles are used as input data in many drugs repur
posing studies to prioritize the drug targets [113] because many drug 
targets work as transcription factors that are likely to regulate the 
expression of the genes. 

There are many studies who used gene expression data for drug 
repurposing based on network-based approaches as shown in Table 4. 
Additionally, one such study which used neighborhood scoring, inter
connectivity, and propagation random walks methods is presented in 
[113]. Gene expression data used in this study was downloaded from 
Gene Expression Omnibus (GEO) [114] repository. The conducted study 
was confined to case studies such as scleroderma, different types of 
cancer and type 1 diabetes with results evaluated using area under the 
curve (AUC). Another network-based study using gene expression data 
used maximum flow method to repurpose the drugs for prostate cancer 
[115]. The data developing network was downloaded from DrugBank, 
OMIM [116], KEGG [117], and PGDB [118]. The evaluation criteria 
were set to mean, precision, and average position (AP). NFFinder [119] 
presented statistical analysis method to repurpose the drugs for neuro
fibromin and the data for this study was downloaded from GEO, CMAP 
[120], and DrugBank. Other studies include Bayesian networks [121], 
virtual gene technique Bayesian networks [122], Kolmogorov Smirnov 
enrichment [123], and functional linkage network [124] etc. developed 
for repurposing in different disease domains. 

Despite being effective, gene regulatory network-based drug repur
posing suffers from some limitations. First, it is difficult to define and set 

Table 4 
Network based repurposing studies using gene regulatory networks, DTI, 
Drug–disease, and side-effect association.   

Study name Method Datasets Evaluation 
criteria 

Gene regulatory networks and Gene expression Data 
1 DTI prediction 

for repositioning 
[113] 

Network propagation, 
scoring based on 
neighborhood, random 
walks 

GEO 
repository for 
Gene 
expression 
data 

AUC - ROC 

2 A network flow 
approach for 
repurposing with 
case study on 
prostate cancer  
[115] 

Maximum Flow OMIM, 
KEGG, PGDB, 
DrugBank 

Precision, 
Mean, 
Position 

3 NFFinder [119] Statistical method for 
analysis 

Cmap, 
DrugMatrix, 
and GEO 

– 

4 System biology 
approach 
developed by a 
novel 
knowledge- 
driven method  
[121] 

Bayesian network-based 
approach 

Gene-gene 
interaction 

– 

5 Functional 
Module Method 
with case study 
of Prostate 
Cancer [145] 

Functional linkage 
network 

TCGA, 
LINCS, GEO, 
OMIM 

AUC - ROC 

6 computational 
DR using 
Kolmogorov– 
Smirnov 
enrichment 
testing for [123] 

Enrichment 
(Kolmogorov–Smirnov) 

GEO and 
CTD 

– 

Protein–protein interaction networks 
7 Network 

Analysis for 
potential DTI 
identification  
[146] 

SVM, Logistic 
regression, L1- 
regularization, KNN 

STRING, 
DrugBank, 
Gene cards 

Z score and 
Standard 
deviation 

8 Comprehension 
of Complex 
disease using 
PPIN [112] 

– Gene 
expression 
omnibus 
(GEO) 

Harmonic 
mean and 
Precision 

9 Drug 
repurposing 
shared network 
of PPIs and genes 
[147] 

Similarity STRING and 
DrugBank 

– 

10 PPINs and MMP 
cellular model  
[148] 

Cross talk by analysis of 
betweenness centrality 

KEGG, OMIM 
and iRef 
Index 
database 

– 

Drug–target interactions 
11 DTI prediction 

using 
Probabilistic soft 
logic [135] 

Soft probabilistic logic DrugBank, 
KEGG, 
DCDB, and 
Matador 

AUC, 
Precision, 
AUPR 

12 Network-based 
inference for 
prediction of DTI 
[136] 

– DrugBank AUC and 
Precision 

13 Bayesian matrix 
factorization- 
based DTI 
prediction[111] 

Prediction based on 
Bayesian algorithm 

DrugBank 
and DTIs 

AUC 

14 DTI prediction 
from integration 
of chemical and 
genomic spaces  
[138] 

Bi-partite graph ML DrugBank 
and DTIs 

AUC 

15 Supervised method of 
network inference 

DrugBank 
and DTIs 

AUC-ROC, 
AUPR 

(continued on next page) 
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a robust gene signature because of the random nature of some gene 
expression data which ultimately results in biased extracted responsive 
networks [125]. Second, the drug targeted genes and regulatory genes 
are not always found differentially expressed. So, the assumption that 
rests on the notion that mathematical optimum from the responsive 
network coincides with maximal biological relevance does not stand 
true. Third, proved from the previous studies, network topological 
characteristic points out that there is no significant relevance between 
potential target proteins and significant points in network [115]. Fourth 
and final, the biological network and living organism’s response are 
complex to map thus estimated gene networks are often used to rely on 
[126]. These limitations can be overcome by integration of information 
from multiple sources and finally a robust drug repurposing framework 
can be developed based on gene regulatory networks. 

2.3.3. Metabolic networks 
Metabolic networks are interconnected pathways depicting 

biochemical reactions taking place within living cells through involve
ment of metabolites with necessary compounds [127]. In metabolic 
networks, metabolite and chemical compounds are represented as 
nodes. Whereas the edges represent the relation between the metabolites 
and compounds. Direct edges show the reactions done by one or more 
enzymes. In some other networks, nodes denote the compounds and 
metabolites whereas edges capture the reaction between nodes. Thus, a 
bipartite graph with directed edges is provided connected two distinct 
entities (nodes). Implying, if a metabolite is direct result of a reaction, 
then a directed edge from compound to metabolite using reaction no
tation denotes the relationship. In other words, if there is an edge from 
metabolite to reaction it implies that reaction is activated by metabolite. 
Once represented, metabolite networks are subject to topological feature 
analysis to capture different kind of relations and uncover repurposing 
opportunities. Additionally, positive change in compound concentration 
caused by specific enzymes may be the cause of disease and drugs are 
used to regulate and adjust the concentration of compounds cause for 
disease [128,129]. 

Moreover, in metabolic networks flux-based analysis (FBA) methods 
are used to identify the drug targets. FBA and other similar methods aim 
at prediction of essential enzymes critical to survival and growth of 
pathogens. In practical, on metabolic networks FBA model was 

developed in [128] to predict the DTIs. The data used in the two-step 
study was retrieved from KEGG database followed by drug target pre
diction for human hyperuricemia. Another study done in [130] 
employed the greedy heuristic search approach to predict the DTIs for 
lunch cancer using metabolic networks. Whereas the methods 
describing anti-microbial DTIs identification were reviewed in [131] 
that used FBA modelling on metabolic networks. Advantages and dis
advantages of methods are discussed clearly in. 

2.3.4. Protein-protein interaction networks 
Protein-protein interactions (PPIs) are required in almost every 

process in cell which emphasizes that the need for understanding is 
crucial for cell physiology in normal and disease states. It is essential in 
drug development because drugs have effect on PPIs. Protein interaction 
networks have proved useful in drug repurposing studies over the time 
(Table 4), since their interactions determine molecular and cellular 
mechanisms, which control healthy and disease states in organism 
[132]. Therefore, with the help of such networks pathogenic mechanism 
of disease can also be understood. Some PPINs based repurposing studies 
are listed in Table 4. Moreover, confining this study to drug repurposing 
it can be stated that PPIs depicts the interactions between known 
druggable targets and other proteins. This interaction between the 
proteins can be direct or indirect [101]. The central assumption used in 
drug repurposing when focusing on PPI networks is that proteins which 
are targeted by similar drugs are functionally related in networks or if 
the drugs are similar, they are supposed to treat same disease and vice 
versa. It is also believed that the topological analysis of the PPIN can 
provide useful insights in drug-target predictions as proteins function in 
form of interaction mostly [133]. 

Owing to the importance of PPIs, many repurposing studies have 
been successfully done. One such study using PPIN for drug repurposing 
is done in [133] which utilizes human PPIN obtained from UniHI and 
maps it with DTIs obtained from DrugBank and GeneCards databases. 
SVM, along with L1-regularized logistic regression and k-nearest 
neighbors’ methods are used for drug repurposing. Z-score and standard 
deviation are used as an evaluation criterion to judge the performance of 
developed models. Other study is presented in [112] predicting the 
drugs for metastasis in colon cancer. Here data was downloaded from 
GEO and set cover-based formulation of coordinate dysregulation in 
complex phenotypes was used followed by harmonic mean method as an 
evaluation of the predictions. Additionally, Parkinson’s disease was 
predicted by analyzing crosstalk in the network by betweenness cen
trality. The data here was downloaded from KEGG, OMIM, and iRef 
databases. 

Despite progress and proving useful, PPIN based drug repurposing 
studies experiences some disadvantages such as, PPIs obtained as the 
part of experimental sources contains links which are not fully charac
terized in detail. Moreover, the data obtained are noisy and incomplete 
thus there are higher chances for network being ended up as biased 
extracted network. 

2.3.5. Drug-target interactions 
DTI prediction is the basis of drug discovery and drug repurposing as 

shown in (Fig. 4(a)). Many of the studies show that the drugs have off- 
target effects and the process of drug repurposing become simplified if 
the targets are predicted accurately. Computational prediction of DTI 
makes discovery process fast, economical, and maximizes the chances of 
success whereas experimental validation of DTI is both time consuming 
and expensive. This emphasizes the necessity of development of 
computational potential methods to predict DTI accurately [134] and 
some of the well-known DTI based repurposing studies are listed in 
Table 4. Many network-based methods for predicting DTI are present. 
Bipartite or tripartite interaction models are created where nodes denote 
the drugs and targets, and edges show interaction between them in 
bipartite networks and in case of tripartite networks nodes represent 
drugs, targets, and disease and edges denote interaction or relationship 

Table 4 (continued )  

Study name Method Datasets Evaluation 
criteria 

Bipartite model 
for DTI 
prediction [139] 

Drug–disease and side-effect association 
16 Drug 

repositioning 
methods based 
on network 
inference [149] 

– CTD AUC-ROC 

17 PREDICT, a 
method to infer 
the new 
indications [44] 

Logistic regression DrugBank, 
SIDER, KEGG 
(Drug), 
DCDB, 
Expression 
Atlas, OMIM 

AUC, 
precision 

18 Clustering of 
Heterogeneous 
networks to 
repurpose the 
drugs [150] 

Clustering NCBI Gene, 
KEGG 
Medicus 

– 

19 Use of Side 
effects in 
Network based 
approaches to 
drug repurposing 
[151] 

Statistical analysis SIDER, FDA 
approved 
drugs 

–  
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between them. 
Some of the notable network-based DTI prediction studies are 

described here in detail (Table 4). One such study is done in [135] which 
presents a probable soft logic method for DTI network analysis. The data 
was collected from the DrugBank, KEGG Drug, and DCDB databases 
(Table 1 and Table 2). The evaluation of the network performance was 
judged using the AUC, AUPR, precision (Fig. 3(b)), and other bioinfor
matics tools (Fig. 4(c)). Additionally, recommendation algorithm was 
used in [136,137] where drug-based, target-based, and network-based 
similarity inferences were drawn to predict novel DTI for drug repur
posing. The predicted drugs were pre-clinically validated in in-vitro 
binding assays. Another study used supervised bipartite graph learning 
approach [138] to predict enzyme interaction and GPCRs interaction 
network. For DTI prediction kernel regression-based method was used 
and method performance parameters used in this study were ROC and 
AUC etc. Other network-based DTI prediction studies for drug repur
posing include bipartite local model (BLM) [139], neighbor-based BLM 
integrated inference [140], statistical analysis of topological measures 
[141], network consistency-based prediction method (NetCBP) [142] 
and more. 

Network-based DTI prediction methods have widely been used 
because of their good performance and various methods as discussed in 
above paragraph. Instead, there are some limitations of these ap
proaches such as in-ability or poor performance of the models in case of 
novel DTI prediction. Other limitations include, low amount of known 
drug-target interaction data available, poor dataset balance, selection of 
negative samples is difficult or not possible since there is either no or less 
negative DTI data available from experiments [142]. Possible solutions 
for the said problems are suggested by many studies such as in [143] 
where they initiated the process by targeting, drug targets of highly 
similar drugs to new targets and vice versa for the drugs. Solving a 
problem leads another problem in this study, which is how to define the 
highly similar drugs or highly similar targets. Additionally, the problem 
of scarce data samples was solved by introducing the randomization 
technique for balancing data samples as in [144]. 

2.3.6. Drug-drug interactions 
Similarity based drug-drug interaction shows the association be

tween two drugs and talks about the aftermaths of the interaction. Drug- 
drug similarity is used in network-based drug repurposing to augment 
the network. Drug-drug interaction similarity can be constructed either 
as biological effect similarity, chemical similarity, side effect-based 
similarity and more. Specifically, structural similarity can be devel
oped by different method, either by using 2D fingerprint similarity or 3D 
conformation of the structures. Having said that, let’s say, two drugs 
having similar expression patterns in cultured cells or lead to similar side 
effects then the drugs can be said to have interaction between them. 
Moreover, drug repurposing opportunities can be found using the 
chemical structures of the drugs. The hypothesis rests on the notion that, 
two drugs which are structurally similar are supposed to treat the same 
indication by targeting the similar protein targets and disease pathways. 
Whereas this hypothesis does not always hold true, however structural 
similarity have been used in successful drug repurposing studies [152] 
which motivates to deeply investigate these approaches in future. 

Moreover, one drug-drug similarity-based study is given in [153] 
where two chemical compounds were compared based upon the 2D 
graphs. Atoms in this study were designated as nodes while bonds be
tween atoms served as edges. This study was based on the basic hy
pothesis that two structurally similar drugs share the same bioactivity 
[154]. Chemical similarity-based studies often extract multiple struc
tural features and then compare the drugs one-on-one based on these 
features. Thus, if the hypothesis returns true, drug repurposing oppor
tunities can thus be availed using chemical association, biological 
means, side effects, or by searching some known biological features such 
as known targets [152]. Another similarity-based drug repurposing 
study using network approach is given in [155] which presents a method 

called SITAR and utilizes five similarities between drugs and targets 
followed by MANTRA [156] which studies the mechanism of action of 
the drug using network-based approach. 

Uncertainty in drug-drug similarity and chemical properties of the 
known drug compounds leads to limitation of the drug-drug interaction- 
based drug repurposing studies. Additionally, there are some physio
logical effects which are hard to capture while using the structural 
features alone thus it leads to the use of multiple similarity measures to 
give a broader perspective like done in [157]. The similarity-based 
strategy is typically employed by drug-drug interaction prediction 
with most similarity-based algorithms relying only on nearest similar
ities overlooking some of the important similarity measures. 

3. Network based studies for Covid-19 

Human coronaviruses (HCoV) include severe acute respiratory syn
drome coronavirus (SARS-CoV) and novel 2019 coronavirus (Covid-19 
also referred to as SARS-CoV-2). SARS-CoV is pathogenic coronavirus 
that is known to emerge from zoonotic reservoir leading to global 
dissemination of the virus [158]. Recently, novel coronavirus (2019 
nCoV) has caused global pandemic with high morbidity and mortality 
rate. Instead of highly accelerated efforts in the field of drug research, 
until now there is only drug approved for the treatment of Covid-19. 

Moreover, de novo drug development is time taking, costly and risky 
process. It takes 12–15 years with $2~$3 billion of the investment to 
develop and new drug and bring it to market [158–160]. An effective 
and timely possible approach to quickly response the drug needs in case 
of emergencies is known as drug repurposing. Drug repurposing is the 
process of finding the alternative uses of already approved drugs 
[161–163]. Over the period, multiple techniques based on machine 
learning, deep learning, mining, and network or graph-based ap
proaches have been widely used to repurpose the drugs for a Covid-19. 

Herein, we provide the comprehensive review along with benefits, 
challenges, and future directions of network science-based drug repur
posing studies specifically for the Covid-19. The studies are divided in to 
three categories based on network proximity, network diffusion, and 
artificial intelligence (Tables 5–7). 

3.1. Network proximity-based drug repurposing in Covid-19 

Network proximity-based drug repurposing studies use the proximity 
measures such as network centralities, node degree, and more for 
identifying and providing the key protein-protein, drug-drug, or drug- 
target associations to repurpose the drugs (Fig. 4a (i)). One of the 
recent studies done in [164] presented a powerful network-based drug 
methodologies for identification of potential repurposable drugs and 
their combination targeting Covid-19. Presented anti-viral and inte
grated repurposing methodology mainly quantified the interplay be
tween HCoV-host proteins and drug targets in human protein-protein 
interactions (PPI). Use of network proximity analysis as shown in Fig. 4 
(b) (i) between HCoV-host targets and drug targets in human PPI led to 
prioritization of 16 anti-HCoV drugs potentially repurposable. Further 
validation [165] was performed by enrichment analysis (Fig. 4c (i)) of 
drug gene signatures (Table 5). Moreover, potential drug combinations 
were captured by complementary exposure pattern. Hypothesis of the 
study was that, for successful replication of viruses and infection host 
cellular factors are required, thus systematic study of human PPI (Fig. 4a 
(ii)) and virus hosts can present an effective method toward under
standing the viral mechanism [166,167]. Despite successful results, this 
study suffered from limitations such as, lack of known host proteins on 
Covid-19, a low binding affinity value of 10 μM was used to specify the 
DTI. Whereas lower binding energy up to 1 μM or less could be a more 
effective cut off. Another network proximity-based drug repurposing 
study is given in [168] which used network medicine-based approach to 
repurpose drugs in Covid-19. This study enriched the PPI with tran
scriptomics and proteomics and then performed network proximity 
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measurement where broach Covid-19 associated underlying pathogen
esis of disease manifestation was explored. A further step was added, 
and network-based predictions were prioritized for treatment by 
combining predictions with propensity score (PS) matching 26,779 in
dividuals from observational study. Here, the associations between 6 
different diseases (consisting of autoimmune, malignant, cancer, car
diovascular, metabolic, neurological, pulmonary) and Covid-19 were 
created. Created network was analyzed followed by the single-cell RNA 
sequencing to uncover the underlying pathobiological and pathophysi
ological relationships between Covid-19 and its associated treatments. 
Moreover, like [164] in this study z-score was used to measure the 
closest proximity distance between pair of interaction proteins and all 

those with z < − 1.5 were considered closest ones. Although not signif
icant, network proximity results in this study showed that rheumatoid 
arthritis has small network proximities (negative Z scores) across all 5 
SARS-CoV-2 datasets. For checking the potential of repurposed drugs to 
reverse the expression at proteomics and transcriptomic level mutated 
by viruses Gene set enrichment analysis was performed to evaluate each 
drug. Next, the drugs were prioritized based on combination of factors 
such as strength of network based and bio-informatic based predictions, 
literature evidence of the prioritized drugs, meaningful evaluation by 
enough patient data and more. This type of muti-layered validation of 
the network predicted drugs find out the key repurposable drugs sup
posed to have potential to reverse the expression of Covid-19 expressed 

Table 5 
Network Proximity based drug repurposing studies in Covid-19 along with datasets used, number of repurposed drugs, evaluation criteria, and tools used.   

Title Datasets used Repurposed Drugs Evaluation Criteria Tools used Ref.  

1 Network-based drug repurposing for novel 
coronavirus 2019-nCoV/SARS-CoV-2 

GEO, CMAP, DrugBank, Uniprot 16 Drugs 
And 4 Drug combination 

Network Proximity 
measures, 
Gene enrichment 

Gephi, Enricher, 
KEGG, GO 

[164]  

2 Designing a Network Proximity-Based Drug 
Repurposing Strategy for COVID-19 

DrugBank, 
GEO, GeneCards 

– Network proximity, 
Functional analysis 

VarElect [169]  

3 SAveRUNNER: A network-based algorithm 
for drug repurposing and its application to 
COVID-19 

DrugBank, 
Uniprot, 
TTD, Phenopedia, CMAP 

24 Drugs, 
5 Drug combinations 

Network Proximity 
measures, 
Gene enrichment, 
ROC performance 
Curve 

KEGG Pathway 
analysis, GSEA 

[170]  

4 Network-Based Approach to Repurpose 
Approved Drugs for COVID-19 by 
Integrating GWAS and Text Mining Data 

GWAS, 
LINCS, DrugBank 

13 Drugs – GWAS [175]  

5 Network medicine framework for identifying 
drug-repurposing opportunities for COVID- 
19 

13 Datasets, DrugBank, STRING 989 Drugs, 77 Validated in 
VeroE6 Cells, 76/77 
validated in Human Cells 

Network proximity, 
network diffusion, 
Network AI 

Experimental, 
Ensembl algorithmic 
prediction 

[176]  

6 Integrative resource for network-based 
investigation of COVID-19 combinatorial 
drug repositioning and mechanism of action 

STRING, DrugBank, ChEMBL, 
PubChem, GO, KEGG, 
ClinicalTrials.gov, SIDER, 
Uniprot, SNAP 

867 FDA approved Drugs 
and Combinations 

Proximity, Gene 
ontology 

– [177]  

7 A Network Medicine Approach to 
Investigation and Population-based 
Validation of Disease Manifestations and 
Drug Repurposing for COVID-19 

CMAP, DrugBank, 
STRING, GEO 

34 Drugs Network Proximity 
measures 

GSEA, RNA- 
Sequencing 

[168]  

Table 6 
AI Based drug repurposing application on networks.   

Title Datasets used Repurposed Drugs Evaluation Criteria Tools used Ref.  

1 Network medicine framework for 
identifying drug-repurposing opportunities 
for COVID-19 

13 Datasets, DrugBank, 
STRING 

989 Drugs, 77 Validated in 
VeroE6 Cells, 76/77 
validated in Human Cells 

Network proximity, network 
diffusion, Network AI 

Experimental, 
Ensembl algorithmic 
prediction 

[176]  

2 Drug repurposing for COVID-19 using 
graph neural network and harmonizing 
multiple evidence 

CTDbase, STRING, 
Hetionet, DrugBank 

22 drugs and drug 
combinations 

Validation with multiple 
sources, In-vitro screening 

GSEA, Plotly, Gephi, 
GNN 

[178]  

3 COVID-19 Multi-Targeted Drug 
Repurposing Using Few-Shot Learning 

Chemical Molecules, 
ZINC, ChEMBL, 

– Loss function and metrics Few-shot learning [179]  

4 Machine learning and network medicine 
approaches for drug repositioning for 
COVID-19 

STRING, ChEMBL, 
DrugBank 

– In-vitro, In-vivo, clinical trials, 
and CMAP 

– [180]  

5 Using informative features in machine 
learning based method for COVID-19 drug 
repurposing 

STRING, DrugBank, 
Uniprot 

80 % of the predictions 
were verified 

Statistical and clinical 
evidence 

Enrichment analysis, [182]  

6 An integrative drug repositioning 
framework discovered a potential 
therapeutic agent targeting COVID-19 

Literature, DrugBank, 
CTD, Uniprot, CMap 

41 Drugs wet-lab, Expression profiles of 
patients and drug 
perturbation cells, clinical 
trials data 

Molecular docking [183]  

7 Network-based repurposing identifies anti- 
alarmins as drug candidates to control 
severe lung inflammation in COVID-19 

Uniprot, STRING, CMap, 
LINCS, GEO 

– Gene expression profiling, 
CMap ranking 

LINCS tools [184]  

8 Drug repurposing for COVID-19 via 
knowledge graph completion 

PubMed and Covid-19 
research literature, 
ClinicalTrials.gov 

5 Drugs ClinicalTrials.gov – [185]  

9 Multiscale interactome analysis coupled 
with off-target drug predictions reveals 
drug repurposing candidates for human 
coronavirus disease 

PolypharmDB, 
DrugBank, STRING 

26 Drugs Infectivity assays, 
combination of human 
coronavirus entry and 
infection assays 

MatchMaker [186]  
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genes. In total 34 drugs (Z< − 1.5 and P< 0.05, permutation test) 
(Fig. 4b (i)) were computationally repurposed with the SARS-CoV-2 
datasets (SARS2-DEG, SARS2-DEP, HCoV-PPI, and SARS2-PPI) using 
the above-mentioned criteria. These drugs were significantly proximal 
to 2 or more SARS-CoV-2 host protein sets. We manually curated their 
reported antiviral profiles. Additionally, Knowledge of the complex in
terplays between SARS-CoV-2 targets and human diseases indicate 
possibilities of drug repurposing, as the drugs that target other diseases 
could potentially target SARS-CoV-2 through the shared functional PPI 
networks. Moreover, further information about the databases, toots, and 
techniques used in these studies are listed in Table 5. Some studies are 
combining different network approaches for improved results such as 
done in [169] which aims to captures the bigger picture of human 
molecular landscape of Covid-19 infection by exploiting the network 
medicine approach as strategy to repurpose the drugs for Covid-19. As a 
starting point, experimentally validated host proteins of the Covid-19 
known to have viral interaction, tissue specific gene expression data, 
were explored by use of techniques such as connectivity significance, 
network diffusion, and network propagation. This process was followed 
to rank genes followed repurposing drugs targeting the ranked genes as a 
treatment for Covid-19. The prioritized collection of genes which served 
as key drug targets for repurposed anti-Covid-19 drugs responsible for 
causing pharmacological effect resulted from normalization and aggre
gation of different scoring methods. Ranking of genes focused on the 
contrasting the different phases of the virus infection and viral replica
tion of the cycle. Further, in this study, drug repurposing was carried out 
by drug-gene interaction data obtained from DrugBank database. 
DrugBank was manually investigated to find out the drugs having direct 
and indirect interaction to virus host proteins. A set of criteria was made 
to find the restricted list of genes (18 genes) and related drugs. Criteria 
include top ranked genes in VarElect ranks of groups G124, G12345 etc. 
followed by main cellular location of target proteins, RNA replication, 
and translation, and finally the existence of drugs already approved as 
potential candidates for repositioning. Moreover, another study called 
SAveRUNNER [170] presents a novel network similarity-based drug 
repurposing framework. It first creates a bipartite drug-disease network 
between drug-targets and disease-causing genes, and it uses network 
based new similarity measure that prioritizes the associations sharing 
the same neighborhood. PPI data gathered from 15 commonly used 
databases was retrieved from [171]. The data contained 217,160 PPIs 
between 15,970 unique proteins. Additionally, disease gene associations 
were obtained from Phenopedia [172] disease-centered view of genetic 
association studies by online Human Genome Epidemiology (HuGE) 

encyclopedia [173]. Moreover, a total of 1875 FDA approved drugs were 
selected for analysis from DrugBank and Therapeutic Target Database 
(TTD) [174] databases. Whereas presented algorithm is six step pro
cedure which takes the list of drug-targets and disease genes as input 
followed by the proximity and similarity computation which leads to 
proximal drug-disease associations. Clustering was performed on the 
drugs and quality score was computed to adjust the network similarity 
and finally normalization of similarity score was carried out using sig
moid function. This study utilized many useful steps from creating the 
network to outcome of repurposed drugs which ensure the robustness 
and usefulness of the approach. Additionally, another network-based 
repurposing approach for Covid-19 done in [175] was conducted by 
integrating GWAS and text mining the data. Here lung-specified gene 
subnetwork enriched with Covid-19 gene associated data obtained from 
GWAS was created to screen 220 FDA approved drugs obtained from 
DrugBank database. Their drug-perturbed gene expression profiles were 
obtained from LINCs and lung-targeted, drug-focused gene modules 
were created. This led to prioritization of the 13 FDA approved drugs as 
a potential treatment for Covid-19. Findings provide the timely and 
valuable insights to repurposed use options of the drugs to be further 
explored in Covid-19. Another very distinguished and interesting work 
in the field of network science and its applications to drug repurposing 
(Covid-19) was done in [176]. Here in this study multiple layers or 
approaches normally applied individually on the networks were fused 
into a single algorithm. Deployed algorithms consist of artificial intel
ligence, network diffusion, and network proximity. Each of them was 
utilized to prioritize the 6340 drugs for expected efficacy in Covid-19. 
This led to a successful approach as a network medicine framework 
for identifying repurposing opportunities in Covid-19. In practice one 
cannot find a single algorithm that consistently performs across all the 
datasets which served as a motivation for this study. A fundamental 
hypothesis was created that multimodal approach that combines the 
predictions from all approaches, based on the consensus among all the 
approaches, combined approaches always exceed the individually best 
performing models. In result of this approach 918 drugs were prioritized 
based upon the predictions from all algorithms and were subsequently 
tested in wet lab experiment. As 77/918 showed the anti-viral effects in 
cultured non-human primate cells. As a step further all those 77 drugs 
were tested in human-derived cells and 76/77 drugs showed the efficacy 
against viral disease. 96 % of the drugs tested in the study were FDA 
approved which is beneficial as these drugs could be directly moved to 
clinical trials. A real predictive power of the approach was demonstrated 
by the positive outcomes of the second human screen with success rate 

Table 7 
Network diffusion based drug repurposing studies for Covid-19.   

Title Datasets used Repurposed Drugs Evaluation Criteria Tools used Ref.  

1 Designing a Network Proximity-Based Drug 
Repurposing Strategy for COVID-19 

BioGRID – Network proximity/ 
Network Diffusion 

Cytoscape, 
VarElect tool 

[169]  

2 Network medicine framework for identifying 
drug-repurposing opportunities for COVID- 
19 

13 Datasets, 
DrugBank, STRING 

989 Drugs, 77 Validated in 
VeroE6 Cells, 76/77 validated 
in Human Cells 

Network proximity, 
network diffusion, 
Network AI 

Experimental, Ensembl 
algorithmic prediction 

[176]  

3 Drug repurposing for coronavirus (SARS- 
CoV-2) based on gene co-expression network 
analysis 

DGIDb, gene co- 
expression, 
DrugBank 

5 Drugs Gene enrichment analysis 
for Genes and miRNA 

Node degree and 
centralities 

[195]  

4 Network-based repurposing identifies anti- 
alarmins as drug candidates to control severe 
lung inflammation in COVID-19 

Uniprot, STRING, 
CMap, LINCS, GEO 

– Gene expression profiling CMap ranking [184]  

5 Integrative In Silico Investigation Reveals the 
Host-Virus Interactions in Repurposed Drugs 
Against SARS-CoV-2 

STITCH, KEGG, 
BioGRID, 
PubChem, IID, 

– Enrichment analysis, 
Molecular docking 

DAVID, GOplot, 
AutoDock Vina, 
Cytoscape, Ligplot+

[196]  

6 Discovery of Potential Therapeutic Drugs for 
COVID-19 Through Logistic Matrix 
Factorization with Kernel Diffusion 

– 4 Drugs 5-fold cross validations, 
AUC, AUPRs, recall, 
similarity diffusion 

Molecular docking [197]  

7 HeTDR: Drug repositioning based on 
heterogeneous networks and text mining 

Mesh, DrugBank, 
PubMed 

10 Drugs AUPR, AUROC, F1- 
measure 

– [198]  

8 MNBDR: A Module Network Based Method 
for Drug Repositioning 

STRING, Cmap, 
LINCS, GEO, 

– AUC, FPR, Specificity, FDR GSEA, KEGG enrichment [199]  
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of 62 % followed by identification of six drugs potentially easily 
repurposed for Covid-19. All in all, the approach presented here did not 
only provided an effective strategy and results in the repurposing of 
Covid-19 drugs but also provided an algorithmic toolset as well. The 
toolset could be readily deployed in future for diseases left untouched 
due to huge cost and time constraints associated with it. As only 918 of 
the 6340 drugs prioritized by CRank were screened, a selection driven 
by compound availability, many potentially efficacious FDA-approved 
drugs remain to be tested. Finally, it is also possible that some drugs 
that lacked activity in VeroE6 cells may nevertheless show efficacy in 
human cells, like loratadine. Additionally, despite the tremendous 
progress in the repurposing of the drugs, repurposing a combination of 
drugs with varying mechanism of actions remains an undefeated feat. 
Since drug combinations are widely used to fight many deadly diseases 
effectively. Severe and rapidly emerging replications of the Covid-19 
made the world realize for the combination therapies that were ex
pected to response more effectively. The ability to repurpose the drug 
combination was hampered by the availability of large range of possible 
pairs. To address this gap a study was done in [177] where an integrative 
network pharmacology inspired web-based tool named COVID-CDR was 
developed for in-silico repurposing of the drug combinations. Deployed 
web-based tool can visualize the interaction in the interactome on the 
cellular level involved in the mechanism of action of the drugs involved. 
COVID-CDR could prioritize Covid-19 repurposable drug combination 
for synergistic effect. In this approach, drugs with targets sharing the 
topological proximity with Covid-19 targets are used to prioritize the 
drug combinations based on drug-target separation. Previously it was 
hypothetical presented that different drug-targets lead to different 
footprints. Combination sharing the commentary exposure can be 
considered as putatively effective in this case. Whereas, successfully 
evaluated drug combinations because of COVID-CDR were evaluated 
using the network computation methods. Network proximity measures 
are calculated using the subnetworks of protein interactome that were 
active context of interest. Since this platform is not automated thus it can 
be further improved by automating the screening of drug-pairs created 
by multi-object optimizers. Finally, in the light of studies presented, it 
can be said that network proximity-based approaches have proved very 
useful for drug repurposing applications, possessing high flexibility and 
diversity. However, mere use of proximity measures to analyze the 
network may or may not present significant results but when combined 
with additional validation approaches such as GSEA, molecular docking, 
and pathway enrichment could present more putative yet diverse 
framework. 

3.2. AI on network-based drug repurposing in Covid-19 

Network-based approaches play very important role in drug repur
posing studies and few of the recent studies are listed in Table 6. Arti
ficial Intelligence algorithms are widely applied on network data for 
variety of prediction tasks as shown in Fig. 4(b) (ii). These tasks include 
node prediction, link prediction, or graph prediction (Fig. 4b (ii)). These 
predictions can be applied to variety of applications and drug repur
posing is one among them. In this section some of the recent studies, 
where AI on networks has been applied to repurpose the drugs, are 
presented. One among these studies is done in [178] in which a Covid-19 
based knowledge graph was built. The knowledge graph consists of virus 
baits, host genes, pathways, and other information. To infer the repre
sentation of the candidate drugs, deep graph neural network approach 
based on biological interaction was used. Candidate drugs were later 
ranked based on the clinical trial history (Fig. 4c (iv)) to prioritize them 
followed by the validation using the genetic profiles and in vitro 
experimental efficacy (Fig. 4c (iii)). Use of deep neural networks and 
integration of the diverse interactions helped in quick identification of 
drugs repurposable for Covid-19. This study suffered from the limita
tions of missing the effective drugs possibly during the initial drug 
ranking. Since the initial group of 3635 drugs were taken as candidate. 

The validation of the drugs was carried out using the population based 
retrospective EHRs analysis and EHRs are incomplete and prone to er
rors in comparison to randomized experimental data. Other limitations 
include the inconsistency between the gene sets. Another Covid-19 
based drug repurposing study using the Few-Shot learning is done in 
[179]. This study introduces the multi-targeted drug repurposing strat
egy which is taken as most efficient approach to diseases such as 
Covid-19. Multi-targeted compound screening is hampered by the lack 
of good quality experimental evidence and information extraction from 
molecules. Recognizing this gap, MOLGNN, a deep learning model was 
proposed and presented which enabled the prediction of molecular 
property. Chemical molecule embedding was performed by using graph 
neural networks (GNNs). GNNs were used to model the ability of the 
drugs to target proteins and their interaction. Let’s say G = (V, E) is a 
graph representing the nodes connected with edges. V represents the 
vertices or the nodes whereas E represents edges between the nodes. In 
connection with the present study, molecules are represented as graphs 
(G), nodes are items and bonds between them are the edges. Following 
this, an input data comprising molecules as graphs in the form of adja
cency matrix A, was constructed for this study. This dataset contained 
more than 2 million unlabeled molecules obtained from ZINC database. 
The deployment of the trained models and downstream classification 
(Fig. 3(c)), Covid-19 related chemical molecules were used. The models 
trained with MolGNN performed well when applied to a small labeled 
fine-tuned dataset. This led to a potentially powerful method called few 
shots learning. This study provided a powerful tool for future research in 
drug repurposing specifically in case of poorly known diseases such as 
Covid-19. Instead of these benefits, there are certain limitations such as 
uncertainties in the datasets used and lack of validation of the predicted 
drugs in corresponding in-vitro and in-vivo models for efficacy testing in 
Covid-19. Moreover, multiple machine learning models are also used 
disease agnostic fashion for network datasets as done in [180] for 
repurposing targeted drugs in Covid-19. Used models are complemen
tary covering Covid-19 and host factors. It starts with ranking of drugs 
matrix factorization on anti-viral first followed using graph kernels to 
rank drugs based on perturbation induced in subnetworks. Manually 
curated datasets containing drug-virus associations with known status 
obtained from [181] were used. Broad-spectrum analysis that started 
from in-vitro validation spanned over the animal models and clinical 
study. Furthermore, results suggest that the drugs ranked using 
anti-viral of the top predicted broad spectrum were found in clinical 
practice for Covid-19 and those from graph kernels were found experi
mentally validated. Additionally, online repurposing tools are also 
widely deployed recently and have proven useful in many cases. Simi
larly, here Covid-19 drug repurposing explorer abbreviated as CoREx 
was deployed as an interactive tool. This can be used to observe and 
understand the interaction between drugs and host Covid-19 targets in 
context of biological networks, clinical use of drugs, protein functioning, 
and cMAP. Despite the contribution and benefits of CoREx tool there 
some limitations such as the matrix decomposition approach can only be 
applied to the drugs for which association with viral disease is known. 
Main limitation of the study is the annotation of the drug-virus pairs 
based on the developmental stages and the related data is hard to find. 
Similarly, the other part of the study (Network medicine) has limitation 
that only those drugs for which targets are known can be used. More
over, feature information is very important machine learning is 
involved. In this connection study emphasizing the informative features 
of network in machine learning based drug repurposing are conducted in 
[182]. Human PPI, Covid-19 specific network, and DTIs were first 
created like most of the studies and later essential proteins were passed 
through a set of algorithms (Machine learning). ML step was followed by 
clustering which served as an important step in extraction of informative 
features. Enrichment analysis was then performed for these informative 
features to validate them in case of Covid-19. This approach helps 
identify key information followed by validation which minimizes the 
false positive or false negative rate of the final prediction. In addition, 
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integrative approaches are used in drug repositioning and are found to 
perform more effective as compared to single or standalone approach. 
This follows the notion that, weaker when joined come together stron
ger. One such graph machine learning based drug repurposing study in 
Covid-19 is presented in [183] which avails the ML and statistical ap
proaches to map and mine the knowledge graph, transcriptomic and 
literature data on the large scale to uncover the potential drugs for 
Covid-19. The computational approach in combination with pre-clinical 
validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) in
hibitor, CVL218, currently in Phase I clinical trial, may be repurposed to 
treat COVID-19. To observe all these predictions virus-centered knowl
edge graph was created and mined using the mining algorithm. In 
realization of the network seven different networks were considered 
consisting of DTI network, an interaction network of drug-target (virus), 
a human protein-virus protein, and more. The databases such as Drug
Bank, Uniprot, TTD, ChEMBL, PubChem, and IUPHAR_BPS [187], 
Binding DB [188], and GHDDI [189] were used. One other study that 
used DrugBank and other databases along with graph convolutional 
networks (GCN) is published as [186] but it consists of analysis of 
multiscale virus host interactome resulting in off-target prediction of the 
drugs. Coupled with cell-based experimental validation this study came 
up with several clinically efficient drugs as potential repurposing can
didates found as a result GCN application to Covid-19 related data. 
Specifically, as a part of the mentioned study, capmatinib (MET inhib
itor) was found to have potent and wide range antiviral activity in 
multiple coronaviruses. The antiviral activity was observed in 
MET-independent manner and additional roles of capmanitib for host 
cell proteins promoting the infection caused by human coronavirus thus 
it can inform further drug discovery studies. Thus, AI assisted 
network-based drug repurposing strategies present effective strategy 
along with many benefits such as time and cost efficiency and high 
reliability. Additionally, the use of GNN and GCN have opened the new 
doors of opportunities in network-based drug repurposing strategies and 
at the same time these approaches also suffer from limitation. Since like 
the other AI methods, GNN and GCN also need data and in most cases 
balanced data to be trained properly and biases can be avoided without 
compromising on the accuracy of the models. Additionally, there is no 
doubt huge amount of the data is being generated and is publicly 
available but there are chances for the data to contain uncertain infor
mation ultimately leading to improper and vague model training. 
Realizing these problems and tactfully handling them can unveil the 
unfathomable power of the GNN and GCN approaches being applied to 
network-based approaches to drug repurposing in Covid-19 and in 
general as well. 

3.3. Network diffusion-based drug repurposing in Covid-19 

Diffusion is a process through which information related to genes, 
proteins, viruses, and other entities diffuse across the drug-target, drug- 
drug, disease-disease, or social networks [190–194] as shown in Fig. 4 
(b) (iii). Some of the related studies are given in Table 7. A simple notion 
behind this concept is that behaviors such as information spread in 
environment, modeled by construction of simple graphs called Regular 
Graphs (GRID-based). There are multiple significant studies utilizing this 
approach to repurpose the drugs in Covid-19 and other diseases. Once 
recent Covid-19 based drug repurposing study is done in [195] where 
gene co-expression-based network for 1441 genes was constructed and 
analysis was performed. The analysis resulted in two significant gene 
co-expression network modules and then data related to miRNAs and 
transcription factors targeting co-expressed modules’ genes were gath
ered from reputable databases led to the establishment of two sub
networks consisted of transcription factors and miRNAs. Subsequently, 
the list of drugs targeting the obtained subnetworks was gained from 
DGIDb database and two networks were constructed again. Finally, 
because of proposed network analysis, five drugs were repurposed as 
candidate repurposable drugs for Covid-19 treatment. Additionally, 

around 10 miRNAs were found to be significant to treat Covid-19. This 
study using diffusion has the capacity to integrate and analyze the het
erogeneous data to support the predictions. Where similar integrative 
approach is followed in [196] to perform validation of repurposed drugs 
using a comparatively different framework which contains KEGG 
enrichment, molecular docking, STITCH search tool, and 
virus-host-drug interactome. These techniques were used to investigate 
the interaction network linked with Covid-19 and chloroquine and 
hydroxychloroquine were utilized as reference drugs to further get into 
the network. As a result, 47 drug targets were found enriched in TLR 
pathway and were found overlapping with Covid-19. Another step of 
molecular docking and dynamics in investigation led to confirmation of 
binding affinity of TLR9 to the mentioned drugs. Additional insights 
from human-drug protein map identified and further confirmed the 
interaction of Covid-19 with TLR pathway will provide key information 
for Covid-19 itself and its treatment. Thus, ensemble or integrative ap
proaches aimed at investigation are useful and results in very fruitful 
insights. Moreover, all the tools, databases, and evaluation matrices 
used in the studies for proximity, AI, and diffusion-based networks are 
given in Tables 5, 6, and 7 respectively. Furthermore, combination of 
diffusion and matrix factorization methods is also used [197] to prior
itize the Anti-Covid-19 drugs. The drug prioritization is based on inte
gration of multiple informative features such as virus sequences, 
established viral-drug interactions, drug chemical structures, and the 
application of logistic matrix factorization coupled with diffusion kernel 
on the graph data. Molecular docking was used for prioritization or 
ranking of the compounds (Fig. 4c (ii)). Here, the gaussian models were 
first built followed by virus sequence and chemical structure similarity 
kernel are designed based on the biological features of identity matrix. 
Then the gaussian and similarity kernel are diffused and finally the lo
gistic matrix factorization model with kernel diffusion is proposed to 
identify potential Covid-19 drugs. Finally, to validate the drugs molec
ular docking was performed to find the binding affinity of the drugs 
potentially repurposable with Covid-19 spike and ACE2 proteins. The 
algorithm is named as VDA-KLMF is compared with recent relevant 
studies (prediction and classical models) based on the 5-fold 
cross-validation. This cross-validation was performed on viruses, 
drugs, and VDAs and as a result best results (recalls, AUCs, AUPRs), 
significantly outperforming the other studies were obtained. Thus, it 
leads to conclusion that integration of various biological data features 
and suitable models, or kernels lead to development of tools that may 
assist in drug development for Covid-19. 

4. Benefits of drug repurposing methods in clinical practice 

Drug repurposing has proved as an effective alternative to costly, 
time consuming, and risky process of de-novo drug development. Due to 
the sudden emergence of Covid-19 pandemic drug repurposing efforts 
helped greatly to make the treatments available to the patients faster. A 
large community of the researchers and scientists have been working on 
the different type of approaches to drug repurposing such as earlier 
defined: machine learning based, deep learning based, and network- 
based repurposing. These methods have made it possible for the drugs 
to enter the clinical trials to fight against Covid-19. 

For example, a network-based drug repurposing study done in [164] 
predicted the 16 repurposable drugs with anti-viral evidence obtained 
from the literature and clinical trial data. Among these predicted drugs 
Sirolimus (originally approved as an immunosuppressant) is registered 
in phase-II clinical trials for Covid-19 [200]. Another work done in 
[182] applied machine learning on networks and repurposed 14 po
tential repurposable drugs for Covid-19, of which Chloroquine is regis
tered in Phase-II & III [201] and Dexamethasone is registered in 
Phase-IV clinical trials [202] as mentioned in Table 8. Similarly, a ma
chine learning and network medicine drug repurposing work [180] 
retrieved a list of 23 FDA approved drugs as potential therapeutics for 
Covid-19. Many of these drugs are already in clinical trials for Covid-19. 
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Additionally, in our recent work of machine learning and molecular 
docking-based drug repurposing framework [42], 12 potential drugs 
were suggested as potential therapeutic for Covid-19. Out of 12 potential 
drugs, Ebselen was found under trial in Phase-II [203] whereas Arte
mesian and Nitrendipine are in Phase-IV clinical trials [204] as shown in 
Table 8. Similarly, multiple deep learning techniques have also been 
used to identify the repurposable drug candidates for Covid-19. One of 
the deep learning-based studies, is done in [205] where deep 
learning-based drug screening was performed followed by a study done 
in [206] where a resource based on deep learning is created to enable 
the fast repurposing of the drug candidates for Covid-19. Finally, in the 
light of the examples tabulated in Table 8, it can be concluded that the 
drug repurposing methods are quite helpful and quick to response in 
case Covid-19 and related emergent situations. Moreover, as the time is 
passing, current methods are being improved and advanced while newer 
methods are introduced. Thus, drug repurposing methods will continue 
to help in fighting against pandemics. 

5. Limitations and future recommendations 

There is no doubt that network medicine approaches are gaining 
more attention and have successfully been deployed in several studies to 
repurpose the drugs for Covid-19 (Tables 5–7). Still there are some 
limitations which needs to be highlighted along with future recom
mendations to overcome them for improved results in the future. 

The limitations in general include the inconsistency in subnetwork 
extraction in biological networks due to the parameter and thresholding 
adjustment. Modified genes and gene expression changes are not 
captured which limits the graphs to estimate the off-target effects of 
drugs on the genes. Additionally, genes used as pharmacological targets 
do not always show the observable signature changes which contrast 
with the commonly adopted notion of mathematical optimum of 
response networks. Similarly, inability of networks to comprehend 
pharmacokinetic modifications and noisy side effects data of drugs make 
it difficult for structural similarities alone to be utilized for drug 
repurposing. 

Moreover, there are different limitations and challenges associated 
with different types of networks. Such as problem of functional links that 
are possibly not defined as they determined through various experi
mental background, is associated with PPINs. So, the constructed 
network will be a biased network because of limited and noisy data. 
Furthermore, there is no easy method to link a response network to an 
entire organism’s reactions. Following other networks, DTI networks 
suffer from the limitations such as various structural and chemical 
properties of known compounds are inaccurate limiting the drug 
repurposing studies based on drug-drug similarity to unlock the true 
potential. Furthermore, structural traits alone cannot predict many 
physiological outcomes. To address these constraints, a variety of sim
ilarity measures, such as the one employed, can be used. 

To overcome these limitations, vast biological data including mo
lecular, pathological, structural, and online health community data 
should be utilized to construction of networks with multiple interactions 
to capture the bigger picture. To construct them, heterogenous data 
from various sources must be utilized to improve the reliability and 
reach of repurposing methods. Since the biological systems of complex 

and cannot be reflected by one aspect only, thus, one type of feature or 
data present the singular aspect of biological system. Single data type- 
based systems may not be reliable and use of integration of heteroge
nous data to capture the multiple aspects of biological system may omit 
the major limitations. Finally, for the standardized evaluation of the 
network-based approaches to drug repurposing a reference body should 
be created. 

6. Conclusion 

The Coronavirus disease (Covid-19) is an infectious disease caused 
by SARS-CoV-2 virus. Started in November 2019 in the Wuhan-China, 
Covid-19 was soon declared as public health emergency of interna
tional health concern by the World Health Organization (WHO) on 
January 30, and it scaled up to pandemic as of March 11, 2020. Due to 
the severity of disease and its volatile speed drug research was accel
erated to help the patients and hamper the growing health concerns. 
Since de-novo drug development is costly and time consuming and on 
average it takes around 12–15 years with $2~$3 billion of investment to 
take a de novo drug from concept to market ready product. Thus, drug 
repurposing emerged as an efficient and scalable approach to find the 
treatment for Covid-19. In this review, a comprehensive overview of 
drug repurposing studies for Covid-19 is provided. The review spans to 
machine learning, deep learning, and network-based approaches while 
specifically network-based approaches to drug repurposing in Covid-19 
are focused. Network based approaches for Covid-19 drug repurposing 
are further divided in three categories: Network diffusion, network 
proximity, and AI on networks. The databases, tools, and other resources 
followed by in-silico, in-vitro, and in-vivo validation studies used are 
also summarized. Moreover, in simplest form machine learning studies 
take the different type of drug and disease related data, perform feature 
extraction, create predictive models, and then models are deployed for 
the prediction in Covid-19 and other diseases. Despite successful 
application in drug repurposing for Covid-19, machine learning ap
proaches struggle to handle the diverse and sparse biological data but 
are easy to interpret which is essential for studies like drug repurposing. 
In addition, deep learning approaches have also been widely adopted for 
repurposing studies have gained attention. Since deep learning models 
are effective in terms of heterogenous and sparse data handling and have 
been deployed to predict repurposed candidate drugs for Covid-19. 
Despite being successful, deep learning approaches suffer from lack of 
interpretability of predictive model and lack of data quality. Addition
ally, network-based methods have also been widely and effectively 
deployed for Covid-19 repurposing. Networks as per the evidence and 
analysis from literature have proved best tools for discovering the 
treatments by linking and investigating protein-protein, molecular, 
phenotype, or gene-expression or other data types. Studies have 
demonstrated that the network models have the potential to generate 
amazing and timely results and their true potential can be uncovered by 
overcoming the limitations of data inconsistency, problem of functional 
links, inability to capture gene expression variation, gene regulation, 
and lack of structure data etc. Despite these limitations, network models 
offer many advantages such as the interpretation of the prediction re
sults that can be validated and visualized by mathematical means. The 
biological network-based studies in Covid-19 covered multiple 

Table 8 
List of repurposed drugs in clinical trials for Covid-19.   

DrugBank ID Drug Name Original indication Trial Phase – Covid-19 Reference  

1 DB00877 Sirolimus Immunosuppressant II [164]  
2 DB00608 Chloroquine Antimalarial drugs II and III [182]  
3 DB01234 Dexamethasone Inflammatory conditions IV [182]  
4 DB12610 Ebselen Type 1 and 2 diabetes condition II [42]  
5 DB13132 Artemisinin antimalarial drug II [42]  
6 DB01054 Nitrendipine hypertension IV [42]  
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pharmacological aspects such as gene regulations, protein interactions, 
drug-target or drug-drug interactions, drug-side effect, and metabolic 
interactions etc. The integration of such diverse biological entities 
extracted from many different databases and experiments in network 
helps to mimic the complex biological systems good for drug repur
posing specific in Covid-19 and in general. Finally, in the light of recent 
literature network-based drug repurposing methods offer more advan
tages than traditional method by simplifying and accelerating the pro
cess of drug repurposing instead of the challenges and limitations. 
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